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Abstract. The paper presents the results of research related to the analytical and numerical description of the local 

stress fields generated by a sharp notch, which tip is located at the interface of the bi-material structure. While the 

problem of the crack initiated on the line separating two different elastic materials is quite well described in the 

literature, the problem of corners with a non-zero apex angle is insufficiently investigated. The analytical 

description of the stress fields around the corner apex, with the use of generalized stress intensity factor (GSIF), 

was obtained on the basis of the equations of the theory of elasticity and the Airy stress function. The analytical 

and numerical method was used to determine the value of GSIFs. Assuming that the specimens (single edge-

notched plate) were subjected to uniaxial load, the GSIFs were determined. The influence of the notch height and 

angle on the value of generalized stress intensity factors was investigated. Moreover, the calculations were made 

for various relative stiffness (Young’s moduli proportions of individual components of the bi-material structure). 

It was found that the normalized GSIF values increase with a decrease in the relative stiffness and an increase in 

the notch height and its apex angle. The results obtained, if possible, were compared with the literature data. A 

satisfactory agreement was found with the results presented by other scientists.  
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Introduction 

The intensive development of composite materials has been noticeable in recent years. Composites 

are usually anisotropic materials. They may have more or less a complex periodic structure and often 

containing voids, inclusions or other internal defects that cause a local stress concentration. The stress 

fields with high gradients consequently lead to the initiation of the fracture in the tip area of the stress 

concentrator. The fracture process in composites can have a various proceed, and the resulting cracks 

can propagate in miscellaneous directions.  

Modelling and prediction of the fracture process is not particularly complicated if the stress 

concentrator is located inside one material phase. In such a situation, well known strength hypotheses 

used for homogeneous materials [1-4] can be applied to predict a composite strength. When the stress 

concentrator is somewhere else (e.g., on the interface), an adequate strength criterion must be formulated 

to predict fracture toughness. The criterion should contain a precisely defined equation with defined 

parameters, on the basis of which it is possible to predict the moment of initiating the fracture process. 

Criterion formulation usually requires knowledge of the description of the singular stresses occurring 

near the tip of the stress concentrator. Many scientists have dealt with singular stress fields. Some 

problems, for example, the interface crack [5; 6], the structural notch [7] or the inclusion on the interface 

[8] are well investigated in the literature. Other issues, e.g., a notch, which tip is located on the interface 

have not been investigated sufficiently. Nevertheless, in the literature one can find the results of research 

for the special case of such a notch (with zero apex angle) - the crack starting at the interface [9-15]. For 

such a crack, assuming that it is perpendicular to the interface, the authors of [9] analysed the stress 

singularities occurring in its tip region. In [10] the eigenequation is presented and generalized stress 

intensity factors (GSIF) for the case of the short crack located in bi-material of infinite dimensions were 

determined. For the case of a crack located in an element with finite dimensions, the GSIFs were 

determined by the authors of the work [11-15].  

As already mentioned, in composite materials there may also be a notch with the tip located on the 

interface, which tip angle is different from zero. Such a problem has not been sufficiently well studied 

in the literature. Thus, the main goal of the presented work is to obtain a qualitative and quantitative 

description of the singular stress fields occurring in the tip region of such a stress concentrator. 

Therefore, the first part of the work presents an analytical description of singular stress fields and the 

method of obtaining them. The quantitative description, associated with the calculation of GSIFs (for 

various geometric and material features of the composite), is presented in the second part of the paper.  
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Materials and methods 

In subsection 1, analytical solutions are given, and the method of their determination is discussed. 

The description of the procedures for determining GSIFs is presented in subsection 2. The third 

subsection discusses the numerical modelling carried out using the finite element method (FEM).  

1. Analytical solutions  

The eigenfunction expansion method was used to obtain an analytical description of the singular 

stress fields occurring in the tip area of the notch which apex is located on the interface (Fig. 1). 
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Fig. 1. Fragment of bi-material structure with a sharp corner,  

the top of which is located on the interface 

A detailed description of this method can be found, for example, in works [16,17]. In the applied method, 

using the basic equations of the theory of elasticity and the Airy stress function, at the beginning general 

asymptotic solutions describing the individual components of stress and displacement fields are 

obtained. For the analysed notch problem, the general solutions are as follows: 
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 – shear modulus; 

 ( ) ( )3 / 1i i i  = − + – plane stress;  

 ( )3 4= −i i  – plane strain;  

 i – Poisson’s ratio, i = 1,2; 

 j = I for symmetric problems (Mode I); 

 j = II for skew-symmetric problems (Mode II). 

Eigenvalue λj and constants Ai, Bi, Ci, Di are determined on the basis of boundary conditions. For 

the analysed problem (Figure 1), the boundary conditions were defined as follows. 

1. Along the interface, for φ = 0; 

1 2 1 2 1 2 1 2r r r ru u u u   ; ; ;        = = = =
,
 

2. Of upper surface of V-notch, for φ = γ; 

1 1 0r  = =  
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3. For 2/ = − ; 

• symmetry conditions (Mode I)  

2 2 0r u  = = ; 

• skew-symmetry conditions (Mode II) 

2 2 0ru = = . 

From the condition of zeroing the determinant of the matrix boundary conditions, eigenequations 

((2)-Mode I, (3)-Mode II) were determined, which subsequent roots determine the values of eigenvalues 

λj in the asymptotic solutions. 
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It is worth noting that in adopting the equations (2) and (3) the following assumptions-

10 2, /,   = = −= −  eigenequations obtained are identical as for the notch problem in homogeneous 

material [16]: 
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The calculations showed that regardless of the material constants and notch angle, the roots of 

equations (2) and (3) – λj – always assume real values (in the range of 0÷1). In addition, the singularities 

of stress fields increase monotonically (λj assumes smaller values) as the proportion μ1/μ2 increases and 

the notch angle decreases. Exemplary solutions of equations (7), for arbitrarily assumed notch angles, 

are shown graphically in Figure 2.  

1/2

 = 90˚

 = 0˚

I

  

Fig. 2. Solution of eigenequations (ν1 = ν2 = 0.3, plane stress condition) 

As for the analytical description of the stress fields, in order to avoid a trivial solution (Ai, Bi,… = 0), 

the matrix of boundary conditions had to be modified. The modification consisted in replacing two 

arbitrarily selected boundary conditions with adopted definitions of the stress intensity factors. Since 

eigenvalues λj always assume real values, the generalized stress intensity factors Kj were defined, 

similarly to the work [16], as follows: 
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 (5) 

After applying thus obtained constants Ai, Bi, Ci, Di to formula (6), an analytical description of stress 

fields was obtained. Because the fracture process will most likely run along the interface or in material 

2, only the formulas describing stresses in material 2 are given below. 
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For the quantitative description of stresses it is necessary to determine the values of the Kj 

coefficients. They were determined using the approach proposed in [18]. The idea of the applied method 

of determining generalized stress intensity factors, along with the necessary modifications enabling its 

use for a sharp notch with the tip on the interface, is discussed below. 

2. The method of determining generalized stress intensity factors Kj  

As already mentioned, the quantitative description of singular stress fields consists in determining 

generalized stress intensity factors Kj (GSIF). The exact solution, enabling the determination of the 

GSIF, is known only for the case of a crack perpendicular to the interface situated in a bi-material 
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structure with infinite dimensions [10]. For sharp corners with the tip located on the interface, with 

different geometrical features, approximate methods should be used to determine the generalised stress 

intensity factors. The presented work uses the analytical and numerical method [18]. In order to use it, 

it is necessary to know the analytical description of stress fields, on the basis of which specific analytical 

formulas describing the GSIFs at a certain distance from the notch tip are formed, as well as data from 

numerical tests. The procedures related to numerical modelling using the finite element method (FEM) 

are discussed in the next section. In this part of the work, the specific analytical formulas used to 

determine the GSIF are derived.  

Using the equation (5), the hoop and tangential stresses at a distance rn and rn + 1 from the notch tip 

can be written as follows:  
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On the basis of the above formulas (7), after simple mathematical transformations, linear functions 

are obtained, which enable the determination of the required general stress intensity factors j( r )K  (at a 

certain distance from the notch tip):  
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The j( r )K  factors are calculated using the appropriate stresses obtained from FEM in formula (8). 

As it is commonly known, in analytical and numerical methods the accuracy of the obtained results 

depends largely on the selection of the area, from which the data obtained from the FEM solution are 

applied to the developed analytical functions. In this paper, the criterion presented in [18] was used to 

define such an area. 

Thus, the calculated coefficients for all n + 1 nodes should be theoretically identical. However, due 

to potential errors in numerical calculations, the results may differ slightly. Therefore, in order to 

minimize the error, the obtained results can be averaged according to the equation (9):  
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In order to verify the method used, the Kj coefficients were calculated for the case of a crack initiated 

at the interface of the bi-material structure. The obtained results were compared with the exact solution 

[10] and the approximate one [19]. A satisfactory agreement was obtained in both cases - the difference 

was about 1.2%. 

3. FEM modelling  

With the development of numerical methods, nowadays, a FEM-based numerical approach is very 

often used. FEM, combined with analytical or experimental solutions, can be used, e.g., to study 

phenomena such as friction [20; 21] liquid and heat flow [22; 23], or piezoelectricity [24; 25]. This 

method can also be useful to determine generalized stress intensity factors. Therefore, the bi-material 

structure, with a sharp notch, the tip of which is located on the interface, was modelled with the use of 

ANSYS Environment (Mechanical APDL). The specimens with a single edge sharp corner under 

uniaxial tension (symmetric problems (Mode I)) were modelled in numerical simulations (Fig.3a). 
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a)   b) 

Fig. 3. Specimens with a single edge-notched plate: a – geometry and method of fixing and loading, 

b – typical finite element mesh  

Due to the symmetry of the specimens, their halves were modelled (the area marked in grey in 

Figure 3a). Symmetry boundary conditions were assumed in the symmetry planes. The specimens are 

described with a mesh of quadrangular eight-node finite elements of an increased concentration around 

the tip area (Fig. 3b). 

In all simulations, the specimens were loaded with a constant load of σy1 = 1Pa, assuming a plane 

stress condition. The value of the load σy2 was determined on the basis of the formula (10), resulting 

from the condition of continuity of strain-εy1 = εy2: 
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The simulations were prepared for various relative stiffness of the individual components of the bi-

material: 

 1 2/ ,=  
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In all simulations, it was assumed that the Young’s modulus of material 1 was constant and be equal 

to: E1 = 1·109 Pa. On the other hand, the Young’s modulus of material 2-E2- was variable and depended 

on the parameter Г. The Poisson coefficients also depended on this parameter, which were respectively: 

ν1 = ν2 = 0.3 (for 1 = ), ν1 = 0.3, ν2 = 0.35 (for 1  ), and ν1 = 0.35, ν2 = 0.3 (for 1  ).  

As for the geometrical dimensions, the notched specimens with variable apex angle ψ were 

modelled. Moreover, in the numerical models, the ratio of the notch height to the specimen width-a/w 

was also changed, with the notch height a being constant – a = 1 m. In all simulations the proportion of 

the remaining linear dimensions was kept constant – h/w = 2.  

Results and discussion 

In this part of the work, the generalized stress intensity factors calculated for the samples described 

in previous section are presented. To calculate the KI coefficients (for tensile specimens, the KII 

coefficients are always equal to zero), it was necessary to determine the eigenvalues λI. The values of λI, 

calculated on the basis of formulas (2), are presented in Table 1. 

Due to the dimensions for the GSIF’s [Pa⸱m1-λj], it is difficult to compare the results obtained. In 

such a situation, their normalized values are most often used [13]. Thus, the determined GSIFs were 

normalized according to the formula below: 

 ( )1

1
j

j j yF K / a
−

=


   (11) 

Table 2 shows the normalized FI factors calculated for the specimens with various relative stiffness 

and notch apex angles.  
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Table 1 

Values of eigenvalues λI for specimens subjected to tensile loads 

 
[˚]

  
[˚]

 

 

       

0 90 0.681447 0.640755 0.563832/

0.56383* 

0.5 0.42944/0.

42944* 

0.32579 0.25150 

30 75 0.729362 0.671115 0.573859 0.50145 0.43042 0.33514 0.26647 

60 60 0.795359 0.720259 0.599749 0.51222 0.43166 0.33627 0.27426 

90 45 0.866117 0.786945 0.649842 0.54448 0.44639 0.33606 0.27385 

 for   for , *-from reference [19] 

Table 2 

Values of normalized stress intensity factors FI, a/w = 0.2 

 

Г 

FI 

2 0 =  2 30 =  2 60 =  2 90 =  

0.1 4.317 6.070 8.765 11.990 

0.2 3.076 3.722 4.713 5.991 

0.5 1.908 2.019 2.236 2.609 

1 
1.361 1.375 1.431 1.579 

1.367*  2.230*/2.220** 2.478*/2.471** 

2 0.983 0.983 0.989 1.042 

5 0.636 0.659 0.659 0.659 

10 0.452 0.490 0.502 0.504 

*-From reference [26], **-calculated for a/w = 0.4 

On the basis of the obtained results, it can be concluded that the normalized values of the generalized 

stress intensity factors FI increase with the decrease of the relative stiffness Г. This tendency is consistent 

with the distribution of the FI coefficients for the problem of a crack oriented transversely to the interface 

of the two-phase structure, with the tip reaching the boundary of both materials [10; 19] The value of 

the stress intensity factors is also affected by the notch angle 2ψ. FI factors increase along with its 

increase. It is worth noting that the influence of the ψ angle on the FI coefficients is more significant for 

cases when Г < 1. The study also investigated the effect of the notch height on the values of the GSIFs. 

As expected, an increase in the notch height, regardless of the material parameters and the apex angle, 

always increases the value of the FI coefficients (Fig. 5).  

  

Fig. 5. Distribution of FI coefficients depending on the relative stiffness Г and notch height a/w: 

a-notched element with apex angle 2ψ = 30º, b-notched element with apex angle 2ψ = 60º 

Conclusions 

1. For all load cases, the eigenequations depend on the material constants of the bi-material and the 

notch tip angle. 

2. Stress fields, regardless of the type of load, have single real singularities. 

2 
I

0 1 = . 0 2 = . 0 5 = . 1 = 2 = 5 = 10 =

1 20 35 0 3. , . = = 1  1 20 3 0 35. , . = = 1 

a) b) 
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3. The normalized values of the generalized stress intensity factors FI increase with a decrease in the 

relative stiffness Г and an increase in the notch height and its apex angle. 

4. A satisfactory agreement was found with the results presented by other scientists-relative error less 

than 1.5%. 
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