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Abstract. Linear stability of shallow flows is usually analyzed in the literature under the assumption that the 

base flow profile is symmetric with respect to the transverse coordinate. Another widely used assumption is the 

rigid-lid assumption where perturbations at the upper surface are not considered. Experimental data show that 

the symmetry of the base flow can be distorted by a non-uniform friction in the transverse direction of the flow. 

Such a situation occurs in applications in case of the presence of aquatic vegetation (for example, in case of 

floods). In this case there is a sharp change of the resistance force at the interface. Experiments show that non-

uniform resistance force plays an important role in development of the mixing layer. In the present paper linear 

stability analysis of shallow mixing layers with non-uniform friction is investigated. Both previously mentioned 

assumptions are removed and the problem is solved for asymmetric base flow profile for arbitrary Froude 

numbers. The friction coefficient is assumed to be a function of the transverse coordinate. Experimentally 

measured asymmetric base flow profile is used in the paper. The linear stability problem is solved numerically 

by a collocation method based on Chebyshev polynomials using different values of the parameters of the 

problem.  
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Introduction 

Shallow flows often occur in applications (examples include flows at river junctions or in 

compound channels). Linear stability of such flows is usually analyzed under the assumption that the 

base flow is symmetric with respect to the transverse coordinate [1-4]. Experimental data [5] show that 

symmetry of the base flow can be distorted by the presence of the non-uniform friction force acting in 

the transverse direction. Such a situation often occurs during floods where moving fluid is in contact 

with aquatic vegetation.  

Linear stability of shallow mixing layers for a symmetric base flow (a hyperbolic tangent velocity 

profile) is analyzed in [6; 7], where it is shown that a non-uniform friction stabilizes the flow. In the 

present paper linear stability of shallow mixing layers with non-uniform friction is investigated under 

the assumption that the base flow is asymmetric with respect to the transverse coordinate. The base 

flow profile is obtained from experimental data [5] where semi-analytical formulas for the velocity 

distribution in the transverse direction are also obtained. Linear stability is analyzed for several 

experimental cases quoted in [5]. Spline interpolation is used to smooth experimental velocity profiles. 

As it is shown in [5], the velocity distribution has a two-layer structure where sharp change of the 

velocity occurs in a shear layer at the boundary between aquatic vegetation and the main channel. The 

presence of an inflection point in the velocity profile indicates possible hydrodynamic instabilities. 

Linear stability analysis is used in the paper to calculate the critical values of the friction coefficient in 

the main channel. Results of numerical calculations are discussed. 

Base flow and linearized equations 

Consider the following dimensionless shallow water equations [4]: 
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obtained from common shallow water equations using values H, gHH / , gH  as scales of 

length, time and velocity respectively;  
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 g – the gravitational acceleration; 

 H – the maximum depth of the channel; 

 cf – the friction coefficient;  

 SOy – the bed slope of the channel along x;  

 SOy – the bed slope of the channel along y.  

The dimensionless base flow is assumed to be of the form 

 ( )( ) ( )yHhyUu == ,0, . (2) 

It follows from the shallow water equations that flow (2) exists if the following conditions are 

satisfied (Sfx is the x-component of the bed-friction force): 

 0 ;0 =−=− fxOxOy SSS
dy

dH
. (3) 

If the undisturbed water depth H is constant, then the base flow (2) exists under the condition  
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where HUFr /=  – the local Froude number of the flow.  

Since the bed slope is constant, condition (4) implies that the product of the friction coefficient 

and the local Froude number must be constant at any point in the transverse direction. Suppose that 

there is a layer of aquatic vegetation in the interval y > 0 (y is the transverse coordinate) where the 

friction coefficient cveg is considerably larger than in the main channel (cmc). Since H is assumed to be 

constant in sequel, condition (4) can be written in the form 

 
22

vegvegmcmc FrcFrc =  ,  (5)  

The subscripts “mc” and “veg” correspond to the main channel and vegetated area, respectively.  

We assume that the friction coefficient has the form 

 ( )y
cccc

c
vegmcvegmc

f αtanh
22

−
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The base flow velocity profile used in our paper is based on the model developed in [5]. To 

determine the base flow profile we use the experimental data from Table 1 in [5] and semi-analytical 

expressions obtained in [5].  

The flow consists of four regions: 

1) the flow in the main channel with constant velocity U2; 

2) the outer layer of the width δO with the velocity 
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3) the inner layer of the width δI with the velocity 
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4) the flow in the vegetated area with constant velocity U1. 
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Here US = U(yO) – U1 is the slip velocity, yO is the inflection point of the velocity profile, the 

width of the inner layer δI = 0.5(CDα)
-1

, where CDα is the vegetation drag. 

The flows in the inner and outer layers match at the point ym. Due to experimental errors exact 

matching is not possible. In order to smooth the velocity profile we approximated the base flow 

velocity and its derivative by cubic splines. The obtained dimensionless velocity profiles (the scale of 

velocity in this case is gh , where h is the depth of the flow) are shown on Fig. 1. The curves in  

Fig. 1 correspond to the following experimental conditions (see Table 1 in [5]): 1 – Case 1, 2 – Case 4, 

3 – Case 7, 4 – Case 9, 5 – Case 11. The two-layer structure is clearly seen from the graphs. The 

presence of the inflection point in the velocity profiles points to hydrodynamic instability of the base 

flow.  

Fig. 1. Base flow velocity distribution for five experimental cases in [5]:   

1– Case 1; 2 – Case 4; 3 – Case 7; 4 – Case 9; 5 – Case 11 

Using the method of normal modes we assume perturbations of the form 
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where uʹ, vʹ and hʹ are small perturbations.  

Substituting (7) into (1) and linearizing the equations in the neighborhood of the base flow (2) we 

obtain the following linear system for the perturbed quantities: 
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The boundary conditions have the form (boundary conditions for uʹ and hʹ are not needed because 

the problem is inviscid): 

 ( ) 0=∞±′v   (9) 

The eigenvalues λ of the boundary value problem (8), (9) determine linear stability of the base 

flow (2). If all real parts of λ are positive, then the base flow is linearly stable. If at least one of the 

eigenvalues λ has a negative real part, the base flow is linearly unstable.  

Numerical method 

The problem (8)-(9) is solved by means of the Chebyshev collocation method. Using the 

substitution ξ = 2/π arctany we map the interval –∞ < y < +∞ onto the interval –1 < ξ  < 1. In terms of 

the transformed variable the solution is sought in the form: 
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where Ti(ξ ) = cos(i arccos ξ) is the Chebyshev polynomial of the first kind of order i. 

The collocation points are 

 Nj
N

j
j ,...,1,0,cos ==

π
ξ   

The parameters used to determine the base flow are shown in Table 1. The results of linear 

stability calculations are shown in the next section. 

Table 1 

Experimental data from [5] 

Cases 
Parameters 

1 4 7 9 11 

CDα, cm
-1 

0.092 0.285 2.43 2.04 2.43 

h, cm 6.8 6.6 6.6 6.8 13.9 

yO, cm 1.34 -0.65 0.48 0.51 0.81 

ym, cm 4.12 1.54 2.21 2.01 2.84 

δI, cm 3.71 2.61 1.24 1.06 1.35 

δO, cm 15.95 16.69 16.50 15.20 21.54 

U1, cm·s
-1

 2.21 1.25 0.43 0.25 0.41 

U2, cm·s
-1

 17.68 17.37 16.82 9.05 22.02 

US, cm·s
-1

 3.68 3.72 3.41 1.79 4.51 

Um, cm·s
-1

 7.41 7.87 6.71 3.64 9.00 

Results and discussion 

Examples of marginal stability curves are shown in Figs. 2 and 3. The flow is stable above the 

curves and unstable below the curves. The maximum of the possible values of cmc 
represents the 

critical value of the friction coefficient in the main channel: mc
k

cr cc max= . The critical values ccr are 

calculated for all five cases shown in Table 1. The results are summarized in Table 2. As can be seen 

from Table 2, the critical values of the friction coefficient seem to be independent on the Froude 

number (however, the Froude numbers used in the experiments in [5] do not exceed 0.22 so that it is 

not clear whether this conclusion holds for other values of the Froude number). It should be also 

pointed out that the base flow used in the paper is obtained from averaged long-term evolution of the 

flow, so that it includes nonlinear effects and changes in the initial structure of the mixing layer. 

However, such an approach is used earlier in the literature [8] and found to be useful in characterizing 

the development of coherent structures (at least at the initial stage). More detailed parametric study is 
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needed in order to fully assess the effect of asymmetry of the base flow on the stability characteristics 

of shallow mixing layers.  

 Table 2 

Critical values of the friction coefficient in the main channel 

Cases 
Parameters 

1 4 7 9 11 

ccr
 

0.031 0.017 0.018 0.020 0.038 

Frmc 0.22 0.22 0.21 0.11 0.19 

 

 

Fig. 2. Marginal stability curve for Case 9 

 

Fig. 3. Marginal stability curve for Case 1 

Conclusions 

Linear stability of asymmetric base flow profile is investigated in the present paper. The 

asymmetry of the base flow is caused by the presence of an aquatic vegetated layer where the 

resistance force is much larger than in the main channel. The critical values of the friction coefficient 

are independent on the Froude number (at least in the range 0 < Fr < 0.22 used in the experiments).  
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